User's Manual

9920 Series

Insulation Resistance Meter

2015-6-1

Version V1.0

Introduction
Checking Packing Contents
Safety Notes 11
Usage Notes
Chapter 1 Overview17
1.1 Introduction
1.2 Characteristics
1.3 Component Names and Operation Overview
1.4 Dimension
1.5 Screen Composition
Chapter 2 Preparing for Measurement
2.1 Measurement Process Overview
2.2 Basic parameter setting process
2.4 Test leads Connection Method
2.4.1 Four-wire Abnormalities Detection Principle

2.4.2 Determine whether the abnormality detec	tion
(contact abnormality detection) function is normal	35
Chapter 3 Basic Settings	40
3.1 Set Test Voltage	40
3.2 Set the Test Range	41
3.3 Set Test Speed	
3.4 Measurement Timing Setting	
3.5 Charging Delay Setting	46
3.6 Comparator Function	
3.6.1 Sorting result signal output mode	48
3.6.2 Sorting Mode	49
3.6.3 Set Upper and Lower Limits and Sorting Mode.	50
3.7 Beep Mode of Sorting Result	51
3.8 Key Tone Switch	
3.9 Test Mode Setting	53
3.10 Short Circuit Detection Function	

3.11 Double Click Trigger Function
3.12 Power Frequency Setting
Chapter 4 Measurement62
4.1 Start Test
4.2 Testing Process
4.3 Measured Value Display
4.4 Test Termination
4.5 Automatic Discharge 68
Chapter 5 Measurement Setting Save
Chapter 5 Measurement Setting Save
Chapter 5 Measurement Setting Save695.1 Save Measurement Setting695.2 Retrieve Measurement Setting70
Chapter 5 Measurement Setting Save 69 5.1 Save Measurement Setting 69 5.2 Retrieve Measurement Setting 70 5.3 Delete Measurement Setting 70
Chapter 5 Measurement Setting Save 69 5.1 Save Measurement Setting 69 5.2 Retrieve Measurement Setting 70 5.3 Delete Measurement Setting 70 5.4 Rename Measurement Setting 71
Chapter 5 Measurement Setting Save 69 5.1 Save Measurement Setting 69 5.2 Retrieve Measurement Setting 70 5.3 Delete Measurement Setting 70 5.4 Rename Measurement Setting 71 Chapter 6 EX.I/O □ (Handler) 72
Chapter 5 Measurement Setting Save

2. Select IO level mode75
6.1.2 Port Signal Details
6.1.3 Port Signal Connection
6.2 Working Mode and Timing Chart
6.2.1 Continuous Mode (measurement timing OFF) 82
6.2.2 Continuous Mode (measurement timing ON)
6.2.3 Sort PASS STOP Mode
6.2.4 Sorting PASS Stop (FAIL STOP) Mode
6.2.5 Forced Termination Judgment Mode
6.3 TEST Signal Stop Delay
6.4 INTERLOCK
6.5 Analog Output
6.6 External Switch Control
Chapter 7 Communication98
7.1 RS232C Communication Method
7.2 LAN Communication Method

Chapter 9 Parameter	
9.1 General Parameters	
9.2 Accuracy	

Introduction

Thank you for purchasing 9920 insulation resistance meter. To obtain maximum performance from this product, please read this manual first before operation, and keep it handy for future reference

Registered trademarks

Windows and Excel are registered trademarks of Microsoft Corporation in the United States and/or other countries.

Checking Packing Contents

When receiving instrument, please check carefully to ensure that the instrument is not damaged during transit. In addition, special inspections of accessories, panel switches and connectors are required. If the instrument is found to be damaged or it fails to operate as described in the user manual, please contact us.

To transport this instrument, use the original packaging and wrap it in a double carton. Damage during transit is not covered by the warranty.

Checking Packing List:

	Item No.	Qt
1	9920 Insulation Resistance Meter	1
2	User Manual	1
3	CD	1
4	RS232 Communication Cable	1
5	Test leads	1
6	AC power cord	1

9920 Insulation Resistance Meter

9800 RS232 Communication Cable

Safety Notes

The instrument is designed to comply with the IEC 61010 safety standard and has been thoroughly tested for safety prior to shipment. However, if it is used improperly, it may cause injury or death and damage the instrument. Be sure to read through this manual and its precautions before use. Our company does not assume any responsibility for accidents and injuries caused by defects in the instrument itself.

Safety Signs

This manual marks the relevant signs for safe operation of the instrument. In order to ensure the safety of the instrument and its users, please read the following safety signs and operating precautions carefully before use.

The sign \triangle his manual is particularly important and should be reac \triangle irefully before using the machine.

Stands for DC (Direct Current).

Stands for fuse

Stands for earth terminal

Accuracy

We use the f.s. (full scale), rdg. (reading) and dgt. (resolution) values to define the measurement tolerances, which have the following meanings:

f.s. (Maximum display value or measurement range)

This is usually the maximum display value. In the instrument, this indicates the currently used range.

rdg. (Reading or displayed value)

The value currently being measured and the value indicated on the measuring instrument.

dgt.(Resolution)

The smallest displayable unit on a digital measuring instrument, i.e., the input value that causes the digital display to show a "1" .

Usage Notes

Installation Environment

- Operating temperature and humidity:
 0 to 40 ° C, below 80% RH (no condensation)
- I Temperature and humidity range that can ensure accuracy: 23 \pm 5°C , below 80% RH (no condensation)
- I To avoid malfunction or damage to the instrument, do not place the tester in the following situations:
- I Places where the sun is shining directly at high temperatures
- I It will splash to the place where the liquid temperature is high and condensation occurs.
- I Exposed to dusty places
- I Locations where corrosive or explosive gases are flooded
- I Locations with strong electromagnetic fields and electromagnetic radiation
- I Places where mechanical vibration is frequent

Checking before use

Before using this instrument, verify that the operation is normal and that there is no damage during storage or transportation. If you find any damage, please contact us.

Before using the instrument, make sure that the AC
power cord and test leads are well insulated and
whether there are conductors are exposed. If a similar
situation occurs, there is a danger of electric shock
when using this instrument. Please contact us.

Handling Precautions

	There are high pressure and high temperature parts
A	inside the instrument during operation, in order to
ZT DANGER	avoid electric shock, do not disassemble
	instrument electronic enclosure.
	To avoid damage to the instrument, physical shock should be
	prevented when handling and operating the instrument.
	Special care should be taken to prevent the instrument from falling.
	Be sure to turn the power off after using it.

	To avoid electric shock and short circuit, the following
	procedures must be observed:
Anger Danger	Do not wet the instrument or use wet hands for operating it.
	Do not modify or disassemble it yourself. Otherwise, it may cause
	electric shock or other accidents.
	Do not place the device on unstable pedestals or in
	inclined places. Failure to do so may result in injury or
	host malfunction due to falling or tipping over.
	 To prevent damage to the instrument, avoid
	vibration and collision during handling and use. Pay
	particular attention to collisions caused by falling.
	• To avoid damage to the instrument, do not connect
	the measurement terminals to the EX.SW terminal,
	EX.I/O terminal, or communication terminal.

Handling leads and cables

To prevent an electric shock, do not short-circuit the	
top of the test leads and the lines with voltage.	
• When testing, for your safety, please use the	
instrument's own test leads option.	
• To avoid damaging test leads, do not bend or	
stretch the test leads.	
• The probe at the front of the test leads is sharp,	
taking care not to be scratched.	
• To avoid damage to the test leads, do not take the	
cables while you are plugging or unplugging the test	
leads. Hold the connectors.	

Chapter 1 Overview

1.1 Introduction

9920 Insulation Tester is an instrument that tests the insulation resistance of components and equipment. Using the constant voltage test method, the voltage output range is 25~1000 V, and the maximum output current is 1.8mA. Meanwhile, it has contact abnormality detection function and short circuit abnormality test function, the fastest test speed is up to 50ms.

The output interface standard of this insulation tester has external output port (EX.I/O), RS-232C interface, Ethernet interface (LAN), analog output port (ANALOG OUTPUT) and U disk interface. The 9920 is suitable for use in the field of different connection requirements, including production and inspection lines as well as laboratories.

1.2 Characteristics

Exterior

- 3.5-inch high-resolution TFT LCD display, easy to operate
- · Compact and powerful

Test voltage source

- Test high voltage source using switching power supply principle
- Maximum constant current 1.8mA output
- Voltage adjustment range 25~1000 V, in step 1V

Test speed

Minimum test cycle takes only 50ms

Four-terminal test

- · The instrument can detect test leads anomalies
- · The instrument can detect the abnormal contact of the

Short circuit detection

• The instrument effectively detects short-circuit conditions and avoids direct application of high-voltage breakdown products.

Rich interface

- External I / O port
- RS-232C interface
- Ethernet interface
- Analog output interface
- U disk interface

Automatic discharge

· The instrument will automatically discharge after the test is over

• Fast, efficient and reliable with contactless constant current discharge

Powered by

- 100~256 V wide power supply
- Power frequency 50Hz/60Hz automatic identification
- Maximum power consumption 15W

1.3 Component Names and Operation

Overview

Front Panel

Rear Panel

Side View

Bottom

Keys	Description
F1	Function key F1
F2	Function key F2
F3	Function key F3
F4	Function key F4
F5	Function key F5
ESC	Function key Escape
ENTER	Function key Enter
PAGE	[Page Switch] Switch [Test Page] <-> [Setup Page] <-> [Save Page] <-> [Communication SetUP Page] <-> [Version Information Page] <-> [Calibration Page]
СОМР	Comparator on/off button

	Lock key
LOCK	Press [LOCK] button, the other
	buttons on the lock page are invalid.
	Press the resume button function
	again.
\bigcirc	[Test start button], in the test stop
START	state, press [Test start button], there
START	will be test voltage output at the
	output terminal.
STOP	[Test stop button], during the test, the button flashes the warning, press [Test stop button], the test is terminated.
	[Direction key] for selecting menu items or set up values

1.4 Dimension

1.5 Screen Composition

Measurement Display

measuring	set up	save	communic	ation 10		calibratio
Voltage 0	025 V				96	
Range 2 speed F	00MΩ AST	R	12	3.4	M	IΩ
Upper limit	ΜΩ	V:	0v	T:	0.	5s
Range †	Range 1	Range	automatic	Voltage se	tting	speed

Parameter setting page

save	communication	1/O calibratio
OFF	Test mode	PASS
OFF	Signal mode	PASS
OFF	Touch-tone	OFF
OFF	Double click action	OFF
	Power frequency	AUTOMATIC
	OFF OFF OFF OFF	OFF Test mode OFF Signal mode OFF Touch-tone OFF Double dick action Power frequency

Set parameter save page

neasurin	g setup satu	ave [communication] I/O] calibratio			
No.	Name				
01					
02					
03					
04		Current record group is empty			
05					
06					
07					
08					
09					
10					

Communication page

A			(10)	
Communicatio	n mode	RS232	10	Calbradon
Baud rate	3	9600		
RS232	TCP			

I/O page

A					_	
measuring	setup	Save	communic	ation	NO.	calibration
I/O level mod	ie	NPN				
Analog outpu	ut range	FULL				
External swit	ch mode	LEVEL				
TEST signal	output	FAST				
Interlock sign	hal	OFF				
External I/O	test	STAR	Г			
NPN	PNF	>				

Chapter 2 Preparing for Measurement

2.1 Measurement Process Overview

The instrument is kept power off, the following steps are taken to prepare for testing.

1. Turn off the instrument and connect the test leads.

2. Plug AC power cord into the mains outlet

Ensure that the power cord is well grounded, which is conducive to the stability of the test.

3. Turn on the power at back of instrument.

At the time being, internal power of the instrument has been turned on and the instrument is in standby mode.

4. Press and hold POWER button on panel to turn on the power.

When instrument is in the standby mode, POWER button at panel light is red, long press POWER button, the power is turned on, the screen is lit, and light of button at panel turns green.

5. Setting measurement parameters (Refer to section 2.2 for details)

6. Start to test

7. Complete test, turn off the power

2.2 Basic parameter setting process

2.3 Pre-measurement Inspection

Before using the instrument, inspect it to verify that no damage has occurred during storage or transportation and it operates normally. If you find any damage, contact us.

Instrument and peripheral checking

Inspection item	Action		
Is there any damage or a crack in the	If any damage is found, do not use it.		
instrument? Are the internal circuits	Return it for repair.		
exposed?			
Is there any dust or contamination, such	If dust or contamination is adhered to		
as pieces of metal, on any terminals?	a terminal, clean the terminal with a		
	swab.		
Is the test lead coating broken or is the	If the coating of a test lead is broken,		
metal exposed?	the measured value may become		
	unstable or have an error. It is		
	recommended to replace the intact		
	wire.		

Power-on checking

Inspection item	Action		
After turn on the power on at the	Return the instrument for repair, if		
back of the instrument, check	the POWER button is not lit.		
whether instrument POWER			
button lit or not?			
When power is turned on,	If the screen does not behave like		
does the entire display turn on?	this, the instrument may be		
the model name and	damaged internally. Return it for		
measurement screen are	repair.		
displayed normally?			

2.4 Test leads Connection Method

- The test leads port is sharp, taking care not to be scratched.
- For safety reasons, test leads supplied with the instrument should be used.
- · To avoid electric shock, make sure the test leads are properly connected

There are two ways to test, one is a two-terminal test and the other is a four-terminal test. The four-terminal test is used to discriminate test errors caused by test connection line abnormalities or test connection abnormalities.

Connection Method of 2-wire Test Leads

1. Front panel connection

2. Rear Panel Connection

Connection Method of 4-wire Test Leads

2.4.1 Four-wire Abnormalities Detection Principle

The four-terminal test method here is not the Kelvin test method described in the low resistance. The insulation resistance test does not

require an additional test lead because the measured resistance is much larger than the contact resistance and the test leads resistance. The two extra lines here are for abnormalities detection.

In the case of insulation testing, it is often judged at the lower limit. When the insulation resistance exceeds the lower limit, the insulation is judged to be acceptable. When the following conditions occur in the 2-wire test, the measured insulation resistance is large, and it is prone to misjudgment. As shown below:

- The test leads and the device under test are not in contact with each other.
- Test lead is broken and disconnected

The schematic diagram of the 4-wire test is as follows:

An open circuit monitoring circuit (CONT-Monitor) between the CONT-LOW terminal and the LOW terminal is used to determine whether the CONT-LOW terminal and the LOW terminal are in contact with the measured object. The same is true for the CONT-HIGH and HIGH terminals.

2.4.2 Determine whether the abnormality detection (contact abnormality detection) function is normal

LOW terminal abnormal detection judgment

The following takes the LOW terminal contact detection

function as an example. The steps are as follows:

 Insert the terminal to be detected by the HIGH terminal, so that the LOW terminal to be detected is kept open.

2. Turn on the power

3. Turn on the anomaly detection function

neasuring Measurement Charging dela Short circuit d Link detection	set up sa timing OFF ny OFF etection OFF	ve communication Test mode Signal mode Touch-tone Double click action	DC Calibration PASS PASS OFF OFF	aθo
		Power frequency	AUTOMATIC	Press the up,down, left and right keys to select the menu item to be set.
OFF	ON			

4. Short circuit HIGHT terminal and CONT-HIGH terminal test clip

5. Perform measurements

6. Anomaly detection error occurs

HIGH terminal abnormality detection

Similarly, to judge whether the abnormal detection of the HIGH terminal works, the same reason is as long as the test clip is inserted at the LOW terminal, the LOW terminal and the CONT-LOW terminal clip are short-circuited, the HIGH terminal keep the open circuit, the abnormality detection function is turned on, the test is performed, and the result is judged.

1. Insert the terminal to be detected at the LOW terminal, so that the HIGH terminal to be detected is saved open.

- 2. Turn on the power
- (Omit)
- 3. Turn on the anomaly detection function
- (Omit)
- 4. Short circuit LOW terminal and CONT-LOW terminal test clip
- (Omit)
- 5. Perform measurements
- (Omit)
- 6. Anomaly detection error occurs

Open circuit abnormality detection

 Insert the terminal to be detected at the LOW terminal, so that the HIGH terminal to be detected is saved open.

- 2. Turn on the power
- (Omit)
- 3. Turn on the anomaly detection function
- (Omit)

4. Short circuit LOW terminal and CONT-LOW terminal test clip, short circuit HIGH terminal and HIGH-HIGH terminal test clip

5. Perform measurements

(Omit)

6. Anomaly detection error occurs

Chapter 3 Basic Settings

For safety, read this chapter before performing measurements.

Note:

During the test, except for the [STOP] key, all other keys are invalid. Users must wait for the end of the test, or press the [STOP] key, send a test stop command to force the test to terminate, and terminate the test process before setting the instrument.

3.1 Set Test Voltage

Users can select between auto range and manual range.

Note:

Since the current is steadily flowing to the object to be measured up to 1 A at the time of auto-ranging or when it is set to 30 m Ω or less, a maximum of 2 W of power may be applied. When users are concerned about the following problems due to the measurement of current, select a smaller measurement current range.

- The object to be tested is blown (fuse, air pump)
- The measured object is hot and the resistance value changes.
- The object to be measured is magnetized and the inductance changes.

If the power of the measured object is within the measurement scope of each range, the power is the resistance value × (measuring current) 2. When the measurement range is exceeded, the maximum open circuit voltage × measurement current may be reached.

Please connect the measured object after confirming the range.

* At the moment of connection to the object under test, a transient inrush current of up to 5 A will flow.

(Stabilization time: about 1 ms for pure resistance)

3.2 Set the Test Range

The range setting is divided into manual range and automatic range. In auto range, instrument automatically selects an appropriate range to test based on the value of the measured resistance.

Range 2		R: 12	3.4	MΩ
Upper limit -	ΜΩ	V: 0v	T:	0.5s
Range †	Range ↓	Range automatic	Voltage set	ting spee

In the measurement page, press [F1] or [F2] key to switch the range. Even if the auto range function is turned on, the manual range switch is also valid (when the auto range is turned on, the auto range function is automatically turned off when the range is manually switched).

Range:

 $2M\Omega \leftrightarrow 20M\Omega \leftrightarrow 200M\Omega \leftrightarrow 2000M\Omega \leftrightarrow 4000M\Omega$

Auto Range Setting:

In the measurement page, press [F3] key to switch the auto range. When set to auto range, the [AUTO] mark lights and [AUTO] mark is not displayed when the auto range function is turned off. Note:

• If the range is changed while the auto range is ON, the auto range is automatically canceled and the manual range is changed.

• If the comparator function is set to ON, the range is fixed and cannot be changed. To change the range, set the comparator function to OFF or change the range in the comparator settings.

• The auto range may become unstable due to the measured object. In this case, manually specify the range or extend the delay time. For the test accuracy of each range, refer to "Resistance Measurement Accuracy".

3.3 Set Test Speed

Press [Speed] key on the test page to switch the current test speed. The fast sampling rate (the rate from the start of sampling until the sorting and display output) is 50ms, and the slow test rate is 500ms.

In the test environment, when the electric field interference is relatively large, or the test is difficult to stabilize, it is recommended to use the slow test.

Range 200MΩ R:123.4 MS	
speed	2
Joper limit $M\Omega$ V: OV T: 0.55	s

Note:

• When the abnormality detection function is turned on, the fast sampling rate is extended to 100ms, and the slow sampling rate keeps 500ms.

• If the sampling period is 500ms during the slow sampling rate test, if the test cycle setting is less than the sampling period of 500ms, the test result is not displayed. This is required to set the test cycle time to be longer than the sampling period.

3.4 Measurement Timing Setting

The measurement timing refers to the time during which the test voltage output until the FAIL/PASS sort signal is output.

Measurement Timing Time = Charging Timing Time +

Measurement Time

Time range setting: 0.045s~999.9s

Display form: countdown display

1. Select parameter setting page

2. Select related menu items

measuring se	tup save f	communication 19	0 Calibration	
Measurement fm Charging delay Short circuit detec Link detection	ON 000.045 OFF 000.045 ton OFF 000.045	s Test mode Signal mode Touch-tone Double click action Power frequency	PASS PASS OFF OFF AUTOMATIC	PRESS THE UP, DOWN, LEFT AND RIGHT KEYS TO SELECT THE MENUITEM TO BE SET.
OFF	ON			
F1	F2			

Menu item	Meaning
	Test timing is turned off, after the test
[OFF]	starts until a forced termination is
	encountered
	Turn on the test timing function, the
[ON]	test will not be terminated until the
	timing is up after the test starts.

2. Delay time value setting

Measurement	timing ON 000	045s Test mode	PASS	
Charging delay	Y OFF	Signal mode	PASS	INHU
Shart circuit de	tection OFF	Touch-tone	OFF	- U-
Link detection	OFF	Double click action	on OFF	PRESS THE UP, DOWN, LEF
		Power frequency	AUTOMATIC	AND RIGHT KEYS TO SELEC THE MENU ITEM TO BE SET
OFF	ON			-

note:

• When the test time is less than the sampling period, the test results are not displayed.

• When the test time is less than the span switching time at the auto range status, the result will not be displayed.

• When testing a capacitive load, when the component under test is not fully charged, the charging current is relatively large and the measured result will be less than the normal value. This is the user's need to adjust the test time or charge delay time according to the capacity (see section 3.5).

3.5 Charging Delay Setting

The charging delay is the period of time during which the voltage is pre-outputted before the test actually begins. This time is included throughout the test cycle. The charging delay is mainly used to test the capacitive component. Before testing the capacitive component under test, the capacitor must be fully charged first, otherwise the current passing through the device under test is not the leakage current, but the charging current. The measured insulation resistance value is also not the true insulation resistance value.

1. Select parameter setting page

2. Select related menu items

measuring set	up save o	ommunication //C) calibration	\wedge
Measurement timi Charging delay Short circuit detect Link detection	Ing OFF CN 000.005s Ion OFF OFF	Test mode Signal mode Touch-tone Double click action Power frequency	PASS PASS OFF OFF AUTOMATIC	PRESS THE UP, DOWN, LEFT AND RIGHT KEYS TO SELEC THE MENU ITEM TO BE SET.
OFF	ON			

Menu item	Meaning
[OFF]	Turn off the charging delay function
	Turn on the charging delay function,
	the setting range is 5ms~999.9s

3. Set the charging delay time

Measurement	iming OFF	Test mode	PASS	
Charging delay	ON 000.0	05s Signal mode	PASS	UHV
Short circuit de	tection OFF	Touch-tone	OFF	
Link detection	OFF	Double click action	OFF	PRESS THE UP, DOWN, LEFT
		Power frequency	AUTOMATIC]	AND RIGHT KEYS TO SELEC THE MENU ITEM TO BE SET.
OFF	ON			

Note:

• The charge delay time is determined by the capacity of the component under test.

• When the capacity of the device under test is large, users can set the charge delay to [OFF] state to test it, and see how long the full charge time is, then set the delay time.

3.6 Comparator Function

3.6.1 Sorting result signal output mode

When comparator function is turned on, the instrument provides 3 types of alarm outputs:

1. Panel LED light alarm

Test value> upper limit value (lower limit sorting)

Within the qualified range

Test value < lower limit (upper limit sort)

2. Sound alarm

Refer to (Chapter 3.7) for this function.

3. External IO port, signal output

Refer to (Chapter 6.1) for this function.

3.6.2 Sorting Mode

There are 3 sorting modes: [upper limit sorting] / [lower limit sorting] / [upper and lower limit sorting]

Example:

Sorting mode	upper	lower	GD	NG
	limit value	limit		
		value		
upper limit	100M		<100M	≤100M
sorting				
lower limit		10M	>10M	≥ 10M
sorting				
upper and lower			10M< test	test value≥100M
limit corting	100M	10M	value	Or test value≤10M
			<100M	

Setting method :

Sorting mode	Setting method
[upper limit	Upper limit turned on, input value is valid,
sorting]	lower limit is turned off ()
[lower limit	Lower limit turned on, input value is valid,
sorting]	upper limit is turned off ()
[upper and lower	Both the upper and lower limit input values
limit sorting]	are valid

Turn on upper limit valid

Itage 0025 V			NUr
inge 200ΜΩ eed FAST	R: 123.4	MΩ	
per lmit MΩ	V: 0v T:	0.5s	Press the up, down, le and right keys to selec

Turn on lower limit valid

ooro .				
nge 200ΜΩ eed FAST	R: 12	3.4	MΩ	
perlimit MΩ	V: 0v	T:	0.5s	Press the up, down, le and right keys to select

3.6.3 Set Upper and Lower Limits and Sorting Mode

When the upper limit comparison mode is turned on

1. Upper limit setting

tage 0025 V			
eed FAST	R: 123.4	MΩ	100
per limit 1000 MΩ	V: 0v T:	0.5s	Press the up, down, le and right keys to set

2. Lower limit setting

Voltage 0025 V	Г		
Range 200MΩ speed FAST	R: 123.4	MΩ	10Dr
Upper limit ΜΩ .ower limit 1000 ΜΩ	V: 0v T:	0.5s	Press the up, down, le and right keys to set
ON/OFF UPPER/LO	WER x10 x1/10		

3.7 Beep Mode of Sorting Result

1. Select parameter setting page

2. Select relevant menu items

measuring	set up sa	/e Commun	ication 10	Calibration	\wedge
Measurement	t timing OFF	Test	mode	PASS	allo
Charging dela	W OFF	Sign	al mode	FALL	
Short circuit d	etection OFF	Touc	h-tone	OFF	
Link detection	OFF	Doub	ile click action er frequency	OFF AUTOMATIC	PRESS THE UP, DOWN, LEFT AND RIGHT KEYS TO SELECT THE MENU ITEM TO BE SET.
OFF	PASS	FALL	END		
F1	F2	F3	F4		

Menu item	Meaning	
	Sorting alarm off	
[OFF]	When the test fails	
	After the test is over	
[PASS]	Alarm when test is GD	
[FAIL]	Alarm when test is NG	
[END]	Alarm after test is completed	

Note:

• When the test value and sorting value are out of range and cannot be judged effectively [L.FAIL] and [F.FAIL] are lit at the same time.

3.8 Key Tone Switch

1. Select parameter setting page

2. Select related menu items

measuring) set up sav	e [communication] 10 [calibration]	\wedge
Measurement fining OFF Charging delay OFF Short circuit detection OFF Link detection OFF	Test mode PASS Signal mode PASS Touch-tone ON Double click action OFF Power frequency AUTOMATIC	PRESS THE UP, DOWN, LEFT AND RIGHT KEYS TO SELECT THE MENU ITEM TO BE SET.
OFF ON		

Menu item	Meaning
[OFF]	Key Tone OFF
[ON]	Key Tone ON

3.9 Test Mode Setting

1. Select parameter setting page

2. Select related menu items

measuring	set up sa	ve Ccommun	ication 1	0 calibratio	
Measurement	timing OFF	Test	mode	CONT	
Charging dela	OFF	Sign	al mode	PASS	UHL
Short circuit de	tection OFF	Tour	sh-tone	OFF	- U-
Link detection	OFF	Dout	sle click action er frequency		PRESS THE UP, DOWN, LET AND RIGHT KEYS TO SELECT
CONT	PASS	FAIL	SEQ		_
CONT	PASS	FAIL	SEQ		AND RIGHT KEYS TO THE MENU ITEM TO

Menu item	Meaning
	Under this mode, after each sampling is
[CONT]	finished, there is a sorting output until the
	test period is reached and the test ends.
[DASS]	Under this mode, the test continues until
[PA35]	[PASS] signal is outputted.
[EAU]	Under this mode, the test continues until
[FAIL]	[FAIL] signal is outputted.
	Under this mode, the test continues until
[SEQ]	the [STOP] button is pressed or the test end
	command is received.

3.10 Short Circuit Detection Function

The short-circuit detection function is used to pre-determine whether there is a short circuit in the device under test before the insulation test. The high voltage of the test output may burn out the metal that causes the short circuit. If users wants to avoid this, the short circuit detection function can be used. The short-circuit detection voltage is about 2~4V. When the device under test is a capacitive load, there is also a charging time. There are two modes for setting the charging time. One is the automatic mode, by monitoring voltage changes at two ends of the device under test to determine if the charge is full. The other mode is a fixed charging time.

Test timing diagram

1. Select parameter setting page

2. Select related menu items

measuring set	ing OFF	Communication IO Calibra Test mode PASS Signal mode PASS	∎dAd
Short arcuit detec	OFF	Double click action OFF Power frequency AUTOMAT	PRESS THE UP, DOWN, LEFT AND RIGHT KEYS TO SELECT THE MENU ITEM TO BE SET.
OFF	ON		

Menu item	Meaning	
[OFF]	Turn off the short circuit detection function	
[ON]	Turn on the short circuit detection function	

3. Select related menu items

Short circuit detection automatic timing mode

measuring set up save	communication 10 Calibration	\wedge
Measurement timing OFF	Test mode PASS	
Charging delay OFF	Signal mode PASS	VHV
Short circuit detection OFF	Touch-tone OFF	- 0 -
Link detection OFF	Double click action OFF	PRESS THE UP, DOWN, LEF
	Power frequency AUTOMATIC	AND RIGHT KEYS TO SELECT
automatic Input		

Short circuit detection timing mode

	etup save	communication 10 calibration	
Measurement ti Charging delay Short circuit det Link detection	ming OFF OFF ection ON 1.00	Test mode PASS Signal mode PASS Touch-tone OFF Double click action OFF Power frequency AUTOMATIC	PRESS THE UP, DOWN, LEFT AND RIGHT KEYS TO SELECT THE MENU ITEM TO BE SET.
OFF	ON		1
F1	F2		

Note:

When the test leads or terminals connected to the object under test are in poor contact, unstable measurement values may be displayed.

3.11 Double Click Trigger Function

The double-click action function is limited to the trigger test, in order to prevent high-voltage electric shock accidents caused by false triggers. When set to double-click, users must press [STOP] key once and then press [START] key to trigger the test.

1. Select parameter setting page

2. Select related menu items

Measurement timing Charging delay Short circuit detection Link detection	OFF OFF OFF	Test mode Signal mode Touch-tone Double click action Power frequency	PASS PASS OFF ON	
	ON F2			THE MENU ITEM TO BE SET.

Menu item	Meaning
[OFF]	Turn off double click function
[ON]	Turn on double click function

Trigger step after the double-click function is turned on

After the double-click function is turned on, the measurement page displays [D.ACTION]

A		11/1.51	D.ACTI	ON
measuring	set up	save communi	cation 1/O	calibration
Voltage 0	025 V			
Range 2	00MΩ	R.		
speed E	AST	1.		
Upper limit -	MΩ	V: 0v	T: 0	.0s
Lower limit -	MΩ			
Range †	Range 1	Range automatic	Voltage setting	speed

Under the test termination state, when the double-click function is turned on, users must first press [STOP] key and then press [START] key to trigger the test. With the double-click function turned off, users can press [START] key to start the test.

3.12 Power Frequency Setting

There are 3 power modes, [50Hz] / [60Hz] / [AUTO]. The correct power frequency setting can effectively filter out noise caused by the power supply frequency. If the power frequency is set incorrectly, it may cause unstable measurement.

If you are not sure about the current power supply frequency, select [AUTO] option. After the [AUTO] option is selected, it must be activated after it is restarted.

1. Select parameter setting page

2. Select related menu items

Measurement timing OFF Charging delay OFF	Test mode PASS	aAb
Short circuit detection OFF Link detection OFF	Touch-tone OFF Double click action ON Power frequency AUTOMATIO	PRESS THE UP, DOWN, LEFT
AUTOMATIC 50Hz	60Hz	THE MEND TIEM TO BE SET.

Note:

When power frequency is under [AUTO], sometimes Causes power frequency to automatically capture failure due to environmental noise, which leads to unstable measurement. In this case it is recommended to manually select the power frequency.

Chapter 4 Measurement

This chapter provides a phased description of the functions used for proper measurement, including the start of the test phase, the test phase, the test display phase, the test completion phase, and the discharge phase.

4.1 Start Test

- 1. Set the relevant parameters
- 2. Press [START] key to trigger the test

3. Test starts, test terminal output voltage, [STOP] key flash

Trigger mode	Meaning		
Manual trigger	Manually press [START] to trigger		
Manual trigger	the test		
External IQ trigger	Trigger test by external EXT.IO terminal		
External to trigger	START signal		
External command trigger	Trigger test by RS232, LAN		
External command trigger	port command		
EVT SW/ port triggor	Trigger test through the panel's		
EXT.SW POLL HIgger	external trigger switch		

note:

- Users cannot start another test again when the test has not ended.
- When the STOP signal of the EX.I/O port is LOW, the test cannot be triggered.
- The test cannot be triggered when the InterLock signal of the
- EX.I/O port is LOW

4.2 Testing Process

The following is the process during the test:

- After the test starts, if the short circuit judgment function is turned on, the short circuit detection will be performed first. If the short circuit phenomenon is detected, the test is terminated. If the short-circuit detection function is not turned on, it will enter the charging delay phase directly, and the test timer will start.
- Once the test timer is turned on, the test screen will display [T: Remaining time], and the measurement countdown will start. Regardless of the state of the program execution, the test will be terminated as soon as the timer expires.
- 3. When the charging delay is turned on, the test page displays the [Delay] mark. When the charging time is up, the test is entered and the port outputs the test voltage.
- 4. During the entire test process, if users press [STOP] key or other forced termination test command or signal (see Section 4.4 Terminate Test), the test is terminated.
- If the test does not encounter a forced termination, press the established test mode and terminate the test when the condition is met. (See Section 4.4 Terminating the Test)

When the test is started, the test port outputs the test voltage. Please pay attention to the bare metal of the test leads fixture and there is a danger of electric shock!

4.3 Measured Value Display

The following is the test range. Once the following range is exceeded, OVER.F is displayed (over the range) And UNDER.F (under the range).

Test voltage and range:

Test veltage	Resistance	Display range	Resolution
Test voltage	range	(Ω)	(Ω)
	2ΜΩ	0.000~4.000M	0.001M
25V≤ V<100V	20ΜΩ	1.90M~40.00M	0.01M
	200ΜΩ	19.0M~400.0M	0.1M
	2ΜΩ	0.000~4.000M	0.001M
100V≤V < 500V	20ΜΩ	1.90M~40.00M	0.01M
	200ΜΩ	19.0M~400.0M	0.1M
	2000ΜΩ	190M~4000M	1M
	2ΜΩ	0.000~4.000M	0.001M
	20ΜΩ	1.90M~40.00M	0.01M
2004242 10004	200ΜΩ	19.0M~400.0M	0.1M
	4000MΩ	190M~9990M	1M

4.4 Test Termination

There are two ways to terminate the test, one is forced termination and the other is automatic termination.

Force mode can be terminated at any stage of the test when a forced termination of a test command or signal is encountered. There are four modes classified by trigger mode as follows:

Trigger mode	Meaning
Manual tormination	Manually press [STOP] to terminate
	the test
External IO termination	Terminate test via external EXT.IO
External IO termination	signal port
External command	Terminate test by RS232, LAN port
termination	command
EVT SW port trigger	Terminate the test via the panel's
EXT.SVV port trigger	external trigger switch

Automatic termination. When the test mode is selected, the test is terminated when the test and sorting meet the established termination conditions during the test.

Classified by test mode as follows:

Automatic test mode	Meaning
	Continuous measurement until
CONTINOde	the test time is up
FAIL STOD mode	Test stops when testing to
FAIL STOP mode	FAIL sorting
DASS STOD mode	Test stops when testing to
PASS STOP mode	PASS sorting
	When EXT.IO signal STOP signal is low, to
SEQ mode	terminated

Once the test is terminated, the test terminal high voltage

stops output, the voltage of the test port may remain high due to the capacitive characteristics of the device under test, and the STOP indicator will continue to flash.

4.5 Automatic Discharge

When the test is terminated, discharge function is automatically turned on. Constant current discharge is performed in accordance with a load of 10 mA.

When the amount of charge accumulated in the capacitive load is relatively large, the discharge time response increases. When the test port is discharged to a voltage lower than 10V, the [STOP] warning light goes out.

At the end of the test, when the component under test is suddenly taken away, there may be an electric charge remaining on the device under test, and there is a danger of electric shock!

Chapter 5 Measurement Setting Save

All measurement conditions can be saved, retrieved or deleted in the format of files. Press [PAGE] to enter the measurement setting save page.

A						\frown
measuring	set up	save	communication	I/O	calibration	PAGE
					Press t	he [PAGE] key to select
					the par	ameter setting page

After entering this page, pressing up and down keys, users can refer to the saved record, users can also make performing of save, load, clear and rename the current record.

5.1 Save Measurement Setting

Use up and down keys to view current settings, press Save key to save the current settings.

No. 01 P2 02 03 04 06 06 07 08 09 10	Name ANEL_01	Voltage Range Measu Chargi Upper Lower Compa Signal	ement timing ng delay imit imit inisan mode mode	0025 200MQ OFF OFF COFF CONT FAIL	Press the up, down, left a right keys to select the me litem to be set.
SAVE	LOAD	CLEAR	RENAME		1

5.2 Retrieve Measurement Setting

neasuring	∫ setup ∫ sav	e communication 1/0	calibration	1 Press F2	to
No. 01 02 03 04 05 06	Name PANEL 01	Votage Ranne timing e enter button to load y	0025 200MQ OFF OFF	select the load 2 Press ENTER confirm loading	to
07 08 09 10		Lower Imit Comparison mode Signal mode	CONT FAIL		

Use up and down keys to view the current settings, press Load key to retrieve the current settings.

5.3 Delete Measurement Setting

neasuring	set up s	ave communication	10	calibration	1 Press F2	t
No. 01 02 03	Name PANEL 01	Votage Rappe	timing	0025 200MΩ OFF	select the load	
04 05 06	Press	the enter key to clear y	r.	OFF	2 Press ENTER confirm loading	to
07 08 09		Comparison m	ode	CONT		
10		Signal mode		PAIL		

Use up and down keys to view the current settings, press Clear key to delete the current settings.

5.4 Rename Measurement Setting

Use up and down keys to view the current settings, press Rename key to revise the current file name.

Chapter 6 EX.I/O 🗖 (Handler)

The EXT.I / O terminals on the rear panel of the instrument support external control, provide output for test and comparison judgment signals, and accept input START and STOP signals. All signals use optocouplers. All input/output signals can be configured to (NPN) or (PNP) levels via the instrument panel settings. Understanding the internal circuit structure and paying attention to safety issues will help to better connect the control system.

6.1 EX.I/O Terminal and Signal

In this section, users will learn about the connection and introduction of EXT I/O.

Do not plug or unplug EXT I/O ports during testing Do not connect the IO port to test terminal

6.1.1 Level Mode Setting

Switching signal level mode NPN (source current mode) and PNP (trap current mode)

NPN Wiring Method

PNP Wiring Method

Level Setting

1. Select IO page

2. Select IO level mode

measuring	setup	save communicatio	n] IO	calibration	\sim
I/O level n Analog ou External s TEST sign Interlock s External I	node kput range witch mode nal output signal VO test	NPN FULL Eavel FAST OFF START			Press the up, down, left and right keys to select the menu
NPN	PNP	1			

6.1.2 Port Signal Details

Port and Signal Description

The EX.I/O port connector uses the D-SUB female terminal of the 36-PIN pin.

Figure:

(Instrument side)

PIN	Signal	Function	I/O	Logical mode
1	START	Start test	I	Edge trigger
2				
3	INTERLOCK	Interlock signal	I	Level
4	LOAD1	Measurement setup record selection	I	Level
5	LOAD3	Measurement setup record selection	I	Level
6	ISO_5V	Isolated Power 5V	0	
7	ISO_COM	Isolated power ground	0	
8	ERR	Connection abnormality, short	0	Level

		circuit abnormality,		
		open circuit		
		abnormality		
9	UFAIL	Over range sorting	0	Level
10	LFAIL	Under range sorting	0	Level
11	BCD0	BCD code	0	Level
12	BCD1	BCD code	0	Level
13	BCD2	BCD code	0	Level
14	BCD3	BCD code	0	Level
15	BCD4	BCD code	0	Level
16	BCD5	BCD code	0	Level
17	BCD6	BCD code	0	Level
18	BCD7	BCD code	0	Level
19	STOP	Terminate test	I	Edge trigger
20	LOAD0	Measurement setup	I	Level
20		record selection		
21	LOAD2	Measurement setup	I	Level
21		record selection		
22				
23	DP0	BCD Decimal point	0	Level
24	DP1	BCD Decimal point	0	Level
25	DP2	BCD Decimal point	0	Level
26	26 ISO_COM	Isolated power	0	
20		ground	Ŭ	
27	TEST	In testing	0	Level
28	PASS	PASS sorting	0	Level
29	BCD8	BCD code	0	Level
30	BCD9	BCD code	0	Level
31	BCD10	BCD code	0	Level
32	BCD11	BCD code	0	Level
33	BCD12	BCD code	0	Level
34	BCD13	BCD code	0	Level

35	BCD14	BCD code	0	Level
36	BCD15	BCD code	0	Level

6.1.3 Port Signal Connection

Electrical Performance Parameter

	Input type	Optocoupler input		
	ON	Internal conduction current is more		
Input signal		than 4mA and the voltage drop is up		
		to 1V.		
	OFF	Input current is less than 100µA		
	Output type	Optocoupler output, open drain		
		output		
	Maximum load	30V DCmax		
Output signal	voltage			
	Maximum	50mA/channel		
	output circuit			
	Output voltage	1V _{MIN} (under condition of 50mA)		
	drop			
Internal	Rated voltage	+5V(NPN mode), -5V(PNP mode)		
isolated current	Rated current	100mA		
source	Isolation status	Isolated from internal circuitry, floating		

Input Circuit Connection

开关输入

PLC 的 NPN 输出

PLC的PNP输出

Output Circuit Connection

驱动继电器

驱动LED灯

电平或运算

6.2 Working Mode and Timing Chart

The following four test modes are described: continuous mode, PASS stop mode, FAIL stop mode, and forced termination judgment mode.

Under either mode, the test is triggered as soon as the test voltage changes, and the instrument will automatically delay the test for 200ms for trigger test.

There are two ways to change the voltage:

- LOAD0~LOAD3 of EX.I/O port select different test setting records
- Test voltage setting command sent by RS232 or LAN interface

6.2.1 Continuous Mode (measurement timing OFF)

When the measurement timer is set to [OFF], the test can be turned on by the START signal of the EX.I/O port, and the test is terminated by the STOP signal.

Set conditions:

Measuring timer	Charging delay	Test end timing
318183		
OFF	AUTO , 5ms~999.9s	FAST

		Item	Time
T1	START, STOP	Signal pulse width	5msmin
T2	START, STOP	Signal detection pulse	5msмах
	width		
Т3	Response tin	ne charging delay time	AUTO , 5ms~999.9s
T4		Contact inspectio : OFF	30ms(FAST),480ms(SLOW
	sampling)
	time	Contact inspection :ON	80ms(FAST),480ms(SLOW
)
T5		Contact inspectio : OFF	50ms(FAST),500ms(SLOW
	sampling)
	interval	Contact inspection :ON	100ms(FAST),500ms(SLO
			W)

6.2.2 Continuous Mode (measurement timing ON)

When the measurement timer is set to [ON], the test can be turned on by the START signal of the EX.I/O port.

Set conditions:

Measuring timer status	Charging delay	Test end timing
ON, 45ms~999.9s	AUTO , 5ms~999.9s	FAST

	Item	Time
T1	START, STOP Signal pulse width	5msmin
T2	START, STOP Signal detection pulse	5msмах

	width		
Т3	Response	time charging delay time	AUTO , 5ms~999.9s
T4		Contact inspection : OFF	30ms(FAST),480ms(SLOW
	sampling)
	time	Contact inspection : ON	80ms(FAST),480ms(SLOW
)
T5		Contact inspection : OFF	50ms(FAST),500ms(SLOW
	sampling)
	interval	Contact inspection : ON	100ms(FAST),500ms(SLO
			W)
T6	Discharge time (<10V)		20msmax(Pure resistance)
Т7	Measuring	l timing	45ms~999.9s

6.2.3 Sort PASS STOP Mode

When the measurement timer is set to [ON], the test can be turned on by the START signal of the EX.I/O port.

Set conditions :

Measuring timer status	Charging delay	Test end timing
ON, 45ms~999.9s	AUTO , 5ms~999.9s	FAST

Note:

When the measurement timer is in the OFF state, the test continues until the sorting is passed (the comparator makes a PASS judgment).

		Item	Time
T1	START,STOP	Signal pulse width	5msміn
T2	START, STOP	Signal detection pulse	5msмах
	width		
Т3	Response tin	ne charging delay time	AUTO , 5ms~999.9s
T4	sampling	Contact inspection : OFF	30ms(FAST),480ms(SLOW)
	time	Contact inspection : ON	80ms(FAST),480ms(SLOW)
T5	compling	Contact inspection : OFF	50ms(FAST),500ms(SLOW)
	intorval	Contact inspection : ON	100ms(FAST),500ms(SLOW
	inter var)
T6	Discharge time (<10V)		20msmax (Pure resistance)
T7	Measuring ti	ming	45ms~999.9s

6.2.4 Sorting PASS Stop (FAIL STOP) Mode

When the measurement timer is set to [ON], the test can be turned on by the START signal of the EX.I/O port.

Set conditions :

Measuring timer status	Charging delay	Test end timing
ON, 45ms~999.9s	AUTO , 5ms~999.9s	FAST

Note:

When the measurement timer is OFF, the test continues until the sorting fails (the comparator makes a FAIL judgment).

		Item	Time
T1	START, STOP	P Signal pulse width	5msmin
T2	START, STOP	P Signal detection pulse	5msмах
	width		
Т3	Response t	me charging delay time	AUTO , 5ms~999.9s
T4	sampling	Contact inspection : OFF	30ms(FAST),480ms(SLOW)
	time	Contact inspection : ON	80ms(FAST),480ms(SLOW)
T5	sampling	Contact inspection : OFF	50ms(FAST),500ms(SLOW)
	interval	Contact inspection : ON	100ms(FAST),500ms(SLOW)
T6	Discharge t	ime(<10V)	20msmax (Pure resistance)
T7	Measuring	timing	45ms~999.9s

When the measurement timer is set to [OFF], the test can be turned on by the START signal of the EX.I/O port, and the test is terminated by the STOP signal.

Set conditions:

Measuring timer	Charging delay	Test end timing
status		
OFF	AUTO, 5ms~999.9s	FAST

		Item	Time
T1	START,STO	P Signal pulse width	5msmin
T2	START,STO	P Signal detection pulse	5msмах
	width		
Т3	Response	time charging delay time	AUTO , 5ms~999.9s
Т4		Contact inspection : OFF	30ms(FAST),480ms(SLOW
	sampling)
	time	Contact inspection : ON	80ms(FAST),480ms(SLOW
)
T5		Contact inspection : OFF	50ms(FAST),500ms(SLOW
	sampling)
	interval	Contact inspection : ON	100ms(FAST),500ms(SLO
			W)
Т6	Discharge	time (<10V)	20msmax(Pure resistance)
T7	Measuring	l timing	45ms~999.9s

6.3 TEST Signal Stop Delay

There are two kinds of TEST signal termination delays, one is fast termination, and the TEST signal returns to high level immediately after the test ends. The other is a slow termination. After the test is finished, it will not return to the high level until the port voltage is discharged to within 10V.

TEST Quick Termination Mode

2. Set the TEST signal output to fast or slow

External IO test START right keys to select th	ineasuring I/O level r Analog or External s TEST sig Interlock :	set up mode utput range switch mode mal output signal	NPN FULL Lavel OFF	communicatio	OU [n	Calibration	
TATT O ON OPERA	External	O test	START				right keys to select the me

6.4 INTERLOCK

The INTERLOCK signal is used for interlocking. When the INTERLOCK function is turned on, all external operation functions of the instrument are valid only when the INTERLOCK signal is valid.

Note:

When the INTERLOCK function is turned on, front panel operation and rear panel control, as well as command control failure. Other operations are valid only when the INTERLOCK signal is active.

1. Select IO page

2. Turn on the INTERLOCK function

3. Turn off the INTERLOCK function

When the INTERLOCK function is turned on, one way to turn off the INTERLOCK is to keep the INTERLOCK signal of the EX.I/O port valid while the panel turns off the interlock signal and the other fails.

I/O level mode Analog output range External switch mode TEST signal output Interlock signal External I/O test	NPN FULL FAST OFF START	Press the up, down, left and right keys to select the men
OFF OF		

After power off, press [POWER] + [LOCK] to unlock.

6.5 Analog Output

The analog output port of the instrument outputs the result with an analog quantity. After each test is completed, the output 0-4V analog voltage value corresponds to the test result. There are two types of voltage output, one is full-range output; the other is component output.

Do not connect the analog output port to the test port, otherwise the instrument will be damaged.

Set the output type

ieasunng sei	tup s	wave cor	nmunication	10	Calibration	$a \cap a$
VO level mode	•	NPN				
Analog output	trange	FOLL				
External switc	n mode	Level				
TEST signal o	subnt [FAST				-
Interlock signa	al L	OFF				Press the up, down, left an
External I/O ta	est [8	START				right keys to select the mer
FULL	EACH	1				

Full range output

Test Voltage	Resistance Range	Output Analog
		Voltage
25V ≤ V<100V	0.000MΩ~200.0MΩ	0V ~ 4V
100V ≤ V < 500V	0.000MΩ~2000MΩ	0V ~ 4V
500V ≤ V < 1000V	0.000ΜΩ~4000ΜΩ	0V ~ 4V
	Over.F	4V
25V S V < 1000V	Under.F	0V

Component Output

Range	Resistance Range	Output Analog
		Voltage
2ΜΩ	0.000ΜΩ~2.000ΜΩ	0V ~ 4V
20ΜΩ	1.90MΩ~20.00MΩ	0.38V ~ 4V
200ΜΩ	19.0ΜΩ~200.0ΜΩ	0.38V ~ 4V
2000ΜΩ	190ΜΩ~2000ΜΩ	0.38V ~ 4V
4000ΜΩ	100140 4000140	0.201/ 41/
$25V \le V < 1000V$	19010122~400010122	0.36V ~ 4V
All resistance	Over.F	4V
ranges	Under.F	0V

6.6 External Switch Control

The external switch (EXT.SW) is used to trigger the test or terminate the test. The external switch can be configured as two signals: one is level. The other is the edge.

Do not connect the external switch port to the test this will damage the instrument.

Set level

A neasuring	setup	save communica	ition] 1/0	Calibration	\sim
I/O level m Analog out External sv TEST sign Interlock si External I/O	ode tput range vitch mode al output gnal O test	NPN FULL FAST OFF START			Press the up, down, left and right keys to select the man
LEVEL	EDG	E			

Chapter 7 Communication

There are two communication modes, one is RS232C communication, the other is LAN (network protocol uses TCP protocol) communication mode. Both modes of the communication protocol use the SCPI protocol.

Do not connect the communication port to the test port, as this will damage the instrument.

7.1 RS232C Communication Method

The RS232C communication method uses 3-wire communication.

Interface and cable

Connection Method

1. Select the communication page

2. Select RS232 communication mode

COMMUNIC BAUD RATE	set up s	ave communication (// RS232 9600	Calibration	aĤd
RS232	TCP	1		Press the up, down, loft and right keys to select the menu item to be set.
F1	F2			

3. Select communication baud rate

D
n, left and the st.

7.2 LAN Communication Method

LAN port communication uses TCP protocol communication.

Interface and cable

The Ethernet interface uses the standard RJ45 port, and the cable uses Category 5 for the Internet cable.

Connection Method

Instrument and computer connection

When the instrument is connected to the computer, the network cable uses a crossover cable.

A termination method uses 568B standard:

Orange	Orange	Green	Blue	Blue	Green	Gray	Gray
white		white		white		white	

B termination method uses 568A standard:

Green	Green	Green	Blue	Blue	Orange	Gray	Gray
white		white		white		white	

Instrument and router connection

When the instrument is connected to the router, the network

cable is directly connected.

568B standard is adopted at both ends:

Orange	Orange	Green	Blue	Blue	Green	Gray	Gray
white		white		white		white	

Setting

1. Select the communication page

2. Select TCP communication mode

COMMUNICAT IP ADDRESS THE PORT NU	etup s	ave Communication I/O Calibra TCP 192.163.001.199 502	∎d⊖d
	100		Press the up, down, left and right keys to select the menu item to be set.
RS232	TCP		

3. Set the IP address

COMMUNICATION MODE IP ADDRESS	TCP 192.168.001.199	aAb
THE PORT NUMBER	502	Press the up, down, left and right keys to set
INPUT		

Chapter 9 Parameter

9.1 General Parameters

General function :

Parameter	Insulation resistance
Measuring Range	$0\Omega \sim 4000M \Omega$ (5 ranges)
Test voltage	0~1000V DC
Maximum Output Current	1.8mA
Connection Execution	High-voltage open-circuit "ContHi",
Diaplay	low-voltage open-circuit "ContLo", and
Display	output terminal open circuit "ContHL"
Short Circuit Abnormal Display	"SHORT"
Range Over Limit Display	Under range "UNDE.F", over range" OVER.F"
Max Discharge Current	10mA
Max input voltage	1100V DC
Maximum Test Canasitaneo	1µF (The measured object capacity exceeds
Maximum rest capacitance	1µ may cause unstable test)
Input Terminal	Banana plug
Operation Key	Rubber key
Display	3.5寸TFT
Precision Guarantee Period	1 year
Operating Temperature and	0°C~40°C
Humidity	80%RH以下(No condensation)
Storage Temperature and	-10°C~60°C
Humidity	80%RH以下(No condensation)
Operating Environment	Indoor, highest altitude 2000 m
Power Supply	Voltage : 100V ~ 240V AC
	Frequency : 50Hz/60Hz

Power Consumption	15VA
Size	Approx. 325mm x 215mm x 96 mm
Weight	About 2 KG

Clock :

Charactoristic	24 Hour clock	
Characteristic	Automatic adjustment time	
Accuracy	About +/-4 minutes / month	
Other Characteristics	Internal backup lithium battery	
	Battery life: about 2 years	

9.2 Accuracy

The following indicators test conditions:

Temperature: 20±3°C

Humidity: <80%RH

Warm-up time > 15 minutes

Calibration time: 1 year

Voltage output :

Voltage output range	25V~1000V DC
Voltage output accuracy	1%±2V
Voltage resolution	1V
Voltage readback accuracy	2%±1V
Maximum charging current	1.8mA
Short circuit test current	2mA

Range display :

Test Voltage	Resistance Range	Display Range	Resolution
Test voltage		(Ω)	(Ω)
	2ΜΩ	0.000~4.000M	0.001M
25V≤ V<100V	20ΜΩ	1.90M~40.00M	0.01M
	200ΜΩ	19.0M~400.0M	0.1M
	2ΜΩ	0.000~4.000M	0.001M
	20ΜΩ	1.90M~40.00M	0.01M
1000 20 < 5000	200ΜΩ	19.0M~400.0M	0.1M
	2000ΜΩ	190M~4000M	1M
	2ΜΩ	0.000~4.000M	0.001M
	20ΜΩ	1.90M~40.00M	0.01M
200020210000	200ΜΩ	19.0M~400.0M	0.1M
	4000ΜΩ	190M~9990M	1M

Resistance measurement accuracy :

Test Voltage	Range	Basic Accuracy
	0.000 M Ω to 2.000 M Ω	±2% rdg. ±5 dgt.
25V≤ V<100V	1.90 MΩ to 20.00 MΩ	±2% rdg. ±5 dgt.
	19.0 MΩ to 200.0 MΩ	±5% rdg. ±5 dgt.
	0.000 M Ω to 2.000 M Ω	±2% rdg. ±5 dgt.
100V≤V<500V	1.90 MΩ to 20.00 MΩ	±2% rdg. ±5 dgt.
	19.0 MΩ to 200.0 MΩ	±5% rdg. ±5 dgt.
	0.000 MΩ to 2.000 MΩ	±2% rdg. ±5 dgt.
	1.90 MΩ to 20.00 MΩ	±2% rdg. ±5 dgt.
500V≤V≤ 1000V	19.0 MΩ to 200.0 MΩ	±2% rdg. ±5 dgt.
	190 M Ω to 4000 M Ω	±5% rdg. ±5 dgt.
	4010 MΩ to 9990 MΩ	±25% rdg.